
~~F 1~~~T~ - 7 7 - 0 7 1 7

n p ,3rI ~ nu ~~ip~~n

1’3N~~~fl f lU ’ ~~‘3~ N (

:~ ~ 
c

Tel-Aviv, Israel

>-

1 ‘ C ,
Prepared for

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

Grant AFOSR 76—30 14

~~~~~ 



1 L U N I T ’ ~ ( . LAS ’,Ii 0 A T L  ‘N ‘ )~ T~~~S PA ,F~ ~~~~~~ t) , , , t , F ,~ f . ’, 1)

REPORT DOCUMENTATION PAGE
)~ RE P O R T  N I IM I i I  f~~1 P _Z~~~~~~~ _ _~~~~~, T A  SS NO 3 p E c I p I F : N T ’ s  C A T  A L C~ t i Mb E R

~ 0 1 - 
_______________________-

4 T I T L E  ,.r,d Sobt, I I .’ I  S T Y P E  OF R E P O R T ~~ PERIOD CO~’ ERED

INTERIM
/ ,.~ A CUMU LATIVE DA MAGE THEORY OF FATiGUE FA LURE1 ______________________________

- 
6 P ERFQRJ,jI N

-~~ I T A U — S O E / 3 9 5 — 7 7 .  ~~~~~~~~~~~~~~~~~~~
7 A j T H OR’ ~

. ‘~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —
Z / I I A S H I N  

—

A ROTO M 4 — AF~ SR—~~~~3Ol 4—~~~~ .

9 P E R F O R M I N G  O R G A N I Z A T I O N  N A M E  AND A D D R E S S  
- - 

0. P R O G R A M  ELEMENT . PR O J E  C T . T A S K
A R E A  & WORK UNIT NUM B~~~~~~--

TEL—AV I\’ UNIVERSITY .
~ / 1 /S C H O O L  OF E N G I N E E R I N G  

~~:. 6 
~~~~~ — - -

R A M A T — A V I V , TEL AVIV 6q978 , ISRAEL 1102F

II. CCr4 TROLL ING OFFICE N A M E  AND ADDRESS 2. REPORT DATE

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH/NA Feb 77
BL OC; ~io I 3 . N M ~~rW~~~P P AG E S

BOLLI NG AIR FORCE BAS E , 0 C 2 0132 ‘ . -~~

II MONITORING AGENCY NAME & ADDRESS(iI d i f f e r e n t  I ron C t r o l l i n g  Office) IS. SECURITY CLASS. ( o f  th~~ r ep ’ U.

U N C I ASS I F l E D
l5~ D E C L A S S I F I C A T I O N  D O W N G R A D I N U

S C H E D U L E

16. D IS T R I B U T I O N  S T A T E M E N T  (of Ihia Rep or t )

A pproved for public release ; dis tribution unlimited.

I i .  D I S T R I B U T I O N  S T A T E M E N T  C, f the ~~~, t r t , - I  e tnr , ’ f n / f l o c k  20, If dlfferenl t rot,, Report)

lB. S U P P L E M E N T A R Y  N O T E S

1 9.  K E Y  WORDS (Conlin e on re.’r ’roe O t  le ,f ,~~~~~ ‘ nrs ’.r i i d e n t I f F  by h l or l ,  n,,mher)
CYCLIC LOADING M I N E R ’ S  R U L E
OAMA(;E C~ RVE RE S I E l ‘Al LI FETI NE
l ) A M A G E  I’LANE Si Ml —l .cN,
‘Al ’ I ; 1 1 I  S — N  (

L OG—LO G T~ 0_STACI: I OAI I N G
20 4 PO T P A C T  (( ‘ ri ,, ,o ot t  re .’,,,, l ,fr i f , . e , t ’ ~~~o, and det t l f t t~ 

P t  ‘~~ 6 ,,,,‘,,he,I

A rat ion., I p henot nenol o~~i Ca l t h e o r y  of  l i t  i g~~’ I i  le t l IS t ’  p r e d i c t  tOl l  iiii E’r , i r hii t r,ir~
‘ a r  l i t  l I l t  Ill V C  I c  in lp l I t I r e d  i s  pre’.i ’ rr t ed . ‘I ’h e t h e o r y  i~ h.~ -. c I  on tile C O l f l  i’~~~t

of  d , i n l a i C ( ’  cu r v e  f i m i  l i e s  .111 ( 1 on in  e q I k i v . i l e n t  I o I d i , E ~ p o N t  t i I~~te w h i c h  d e f  l O t ’ S
‘;~~~& ‘ i  i m e i t s  t h a t  I l i v e  s t i f f  t r ed  i d e n t  I t  . 1 1  dam .~~’i ’ t i n d e r  I j f  u i ’ r e n t  l o a d i n g  p r o o  r . i T I l C
L i f e t  i rnI’  , i n , , l V s j s  I r i s  b e e n  p e r f o r m e d  f o r  v a r i o u s  I ,i~~~ ’s  ol 1 1i  ‘t ~’ i s , ’  (‘ O i i S t . i f l t  .311(1

i ’ r lt  i n t r o u i s  v~i r i i t . i o n  of  e v e  l e  a m p i i t  t I l l ’ . F o r  c oot  m in u s  \‘ . ir i ,t  lU l l , t h e  T I C I  E T N I
‘r eq I I r e ’  nt i t n e rj ’  ii m t  f ’ I’ r , I t  i o n  of  0 ) 1 1 1 1  near f i r s t . I r 1, ’r ( f l i t  F r i t O  i i i  (‘q i lat  j o l t s
wit I I I  h i ve been i s t  a l l  i s I l F ’ I l  i n  t h i s  w o r k .

DD , 
~~~~~~~~ 

1473 F C TI tl OF I NOV hS IS O 8 S O L ET F . 
IIN( 1 ,\5S I r I III

— ( -- S F C U R I I Y  C L A S S I F I C A T i O N  OF T N I S  PA O F  (i$?,Cfl t).ta Rote,,. ,)

_ _  _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~



- ---‘—-
~~
- “ “ “ “

~~~~T T~~~’

Scientific Report No. 3 Febr uary 1977

TAU-SOE/395-77 Grant AFOSR 76—3014

A CUMULATIVE DAMAGE THEORY

k
OF FATIGUE FAILURE

by

Z. Hashin and A. Rotem

‘
I--i

C

De p a r t m e n t  el  Sol Id Nii h an . i c s  , ‘

M a t erj ) , 1 s  and S t r uc t u r es

The research  r epo r t ed  in t h i s  document  has been s u p p o rt e d  b y the  A I R  F~)RCE

OFFICE OF SCIENTIFIC RESEARCH under  Gran t  76—3014 , t h r o u g h  the  E u r o p e a n

O f f i c e  of Aerospace  Research  ( E O A R ) ,  U n i t e d  St at e s  A i r  F’or c e .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _  -A



¼

~I C’E OF S CI T . 1 I ” I C  j~~::~~~,J.

. SMITTAL T’C ‘ . ‘~

~~~ ri~ .,~rt L:r.. C -  fl r O V l C c e  (I

pu~1i~ r m o .  ~J ’.’.v AFR 1 3 L - _
‘ -I I~ u o t L - .’i  ~~~~~~

~~~~~ orantlon Offloer

_ _ _ _ _  ~~~~~~~ _ _
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ABSTRACT

A rational phenomenological theory of fatigue lifetime prediction under

arbitrary variation of cycle amplitude is presented . The theory is based on the

concept of damage curve families and on an equivalent loading postulate which de-

fines specimens that have suffered identical damage under different loading pro-

grams. Lifetime analysis has been pertormed far various cases of p i e c e w i s e  con-

stant and continuous variation of cycle amplitude. For continuous variation , the

method requires numeric al integration of nonlinear first order differential e ’ q l I lt  ions

which have been established in this work , 
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1. Introduction

A basic problem in design for fatigue safety is the prediction of lifetime If

,~ structural part when the amplitude of cyclic load varies in prescribed fashion

with the number of cycles.

The classical test for fatigue failure is sinusoidal constant amplitude

cycling—to—failure of a specimen or structural part resulting in the number of

cycles—to—failure or lifetime N(G), where ~ is the stress amplitude . The plot

of G against N is known as the S—N curve. Suppose now that the specimen

is subjected to a loading program ~(n) where n is number of cycles. The

problem is to determine N — the number of cycles to failure under this loading

program.

In view of the extreme comp lexity of internal fatigue failure mechanisms ,

there is little hope of resolving the problem on the basis of micro—structural
‘S

consid~~rtitions. An alternative is to consider the problem in phenomeriological

l - ~slrion . It should , however , be borne in mind that fatigue failure test da t a  a re

~u b J e c  t to cons ide rab l e  s c a t t e r .  In o r d e r  n ot  to  f u r t h e r  comp l i c a t e  .i v e i  - .  diffi~ u t

prob lt’m , it is reasonable to disregard initiall y the statistic al s. atter aspects o

the problem. Thus all results are to be interpreted in some “central measure ”

~‘en e,. . The problem considered in t h i s  sense has become known as t’umu l tit I V E ’  d , m i n ~~~e

t h e o ry . It has been the sub j ec t  of numerous  i nves t iga t ions, p a r t i c u l a r l y  in  t h e

l ist thirty years. Since there are many excellent reviews of previous work , E . g.

I , 2 , 3 , 4), present discussion will be limited to some selected a sp e c t s .

A hr is  ic con c e p t  in the  a p p ro a l ’hes g i v e n  i s  the  damage fu n c t  ion wh I ‘h del inF’ s

n sen t ’  s ens e  the  damage produ ced in  a spec imen when sub] ci ted to  n cyc  i i ’s  i i i

- 1  r t ’ s s  amp i i tu de  ~ . T h i s  I un c t  i (In 15 01 t e n  yr  i t t  t n  as F ( n / N )  where  N i s  t ime

l i t  ime t o r  c o n s t a n t  amp i i t  ude ~ i ’y c l  ln~~. Pas t  work su u r n s  i t t  h - u t ’ ,~ ~~~~~ 1 j ”~t s , ’ i  

— - --- .-- 
~------ .---‘ I - ‘ - ,  - _ _ _
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t o  the case where the loading is p iecewise  cons t an t , here r e f e r r e d  to as m u l t i —

St . lc c  l o a d i n g .  P a r t i c u l a r  a t t e n t i o n  has been given to the simplest case of two—

S t l ~~c loading.  For m u l t i — s t a g e  loadings the damage func t ion  is w r i t t e n

~~ ‘~2F( , , . . . ) (i.l)
1 2 k

i t  is stipulated that

0~~~ F a ~ l (1.2)

lailure being defined by F l .

A simplistic and well known damage function has been postulated by Palmgren

[5] and by Miner [6] and has become known as Miner ’s rule. According to them ,

failure in a multi—stage loading is defined by

~

‘ 
- = 1  (1.3)

where

n . — number of cycles at level o .1 1

N
1 

— l i f e t i m e  at cons t an t  ampl i t ude  c’ .

Ac cording t o  t h i s  ru l e  damage produced by o . fo r  n . cycles is defined as

I / N  and the individual damages are additive and independent of sequence.

T h i s  simplistic approach does not in general comp l y with reality. It is knowi

i x p e r i m ” n t  t h y and i t  is physicall y plausible that the order of loading can signif-

I c - n t  l v  I c t  t he  I l i t  inc of a s p e c i m e n .  Thus , in t w e— s  t aCt ’  const  an t  amp I i t iidi’

l ’ ) i l ( I i f l i ’ ’ , t h e  l I f t  s i d e of (1.3), which is some times termed M i n e r ’ s c o e f f i c i e n t ,
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s usually different from unity and is dependent on loading sequence.

It should be noted that the only material characteristic entering into Mimer ’s

‘ule is the S—N curve for constant amp litude loading. It seems unreus’.nable to

assume that such simple information would be sufficient for lifetime predicti on

under arbitrary loading programs .

Marco and Starkey [7] assumed that “damage” produced by n cycles at level ~

given by (n/N)0’ where the exponent is a function of ~~~. They arrived at

cilure condition which for two -stage loading assumes the form

“1 ~1
”0’2 

n
2( — ) + — 1 (1.~+)N

1 
N
2

,:nd can be generalized to multi—sta ge loading. Appar ently , the dependence of the

exponent n on ~ must be uncovered by experimental means and this lees not

cppear to be an easy task. It will be seen that (1.4) is a specifi special case

f the theory to be developed in this work which does specify the dependence of

u. on ~ in unequivocal fashion .

Shanlt ’ - [~~1 h~ s c o n s t r u c t e d  a theory  in which it is p o s t u l a t e d  t h a t  d a m a g e

tn be described in terms of C~
0’n. Corten and Dolan [9] described damage in the

t , , r m  Cn a 
. A detailed account of these and o ther  approaches  may he found  in [ 1 ] .

The present work provides a systematic new approach  to t h e  p r o b l e m  w h i c h  is

on the concept of damage curve families , to be defined further on. The

res :ripti on of “damage” by some function is avoided. A better concept is residual

1~~te ti m e , this being a quantity which , un l ik e damage , can be defined and m e a s u r e d .

I I i  damage I’ ur v e I  are  d e f i n e d  in te rms of t h i s  q u a n t i ty .

- ,  - .
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The Concep t  of Damage C u r v e s

We consider a specimen which is subjected to cyclic loading of c o n s t a n t

riaximum amplitude 01, failure taking place after N
1 

cy c l e s .  The p a i r  of n u mb e r s

define a point on the S—N curve of the specimen , Fig. 1.

If the specimen is subjected to n
1 cycles , n

1 
‘ N 1, a t  0

l~ ~~ s u f f e r s  a

ertain amount of unknown internal damage, The pair of numbers , n
1 

; cj defines

it point in the s—n plane. The region bounded by the n ,C axes and the S-N c u r v i .

st~ he ~.onsidered as a damage region. Each of the points within the damage region

i ip ~~’ . I f  j e s  in some sense an amount of damage for n cycles at amplitude a

N e x t  we consider the situation where after n
1 

cycles at 
°l ’ 

cycling is

ontiued at  some stress amplitude ~~~. The remaining number of c~’c1es t o  failure

s ailed the residual lifetime and is denoted N—n where N is the constant

amplitude lifetime at a. The pairs of numbers n;a define a curve in the S—N

p I . t n c , Fig. 1, which is called the damage curve. Evidently, the damage curve undei

- n  .~cde r ,m tion must pass through the point n
1 ;

It shauld be noted that in this description the damage suffered by a specunen

s~, -~c n t  tally defined by its residual lifetime which is a measurable quant ity.

tn :~—N c i r ce  is the ultimate damage curve when remaining lifetime is zero.

The basic assumption is made that a damage curve is uniquely defined by its

- 
n i t i a l  p o i n t .  This implies that if any other point on the damogt ’ c u rv e  n

2
, 0 2 ,

‘ a t , is interpreted as the first stage of a two—stage cycling experiment , the

m I m i ng  lifetimes for various subsequent stages will be determined by the init ia

m i m g e  t i r v e  wh i ch  passes through n
1 ; 01

. This aosunsp t c on  can he nr - c € ’ p t ed w i t h em ’

i c  , h ’ m i t  dist m e t  ion between low—high and high—low loadin g s. Further di 5, 1155 i n  o t

t I c s  l a t t e r  a spec t  i s  g I ’~t ’n l i t e r .

- - - — - -
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Uni queness of the damage curve passing through a point and subsequent analytical

p r -~~ t ’d u r e s  f o r  lifetime computations are based on a fundamental postulate whi h w ill

flow be explained. For this purpose we shall introduce time concept of equivalent cycl ic

lo idiugs . Cyclic loading programs are termed equivalent for stress amplitude a if

t a r subsequent ccnstant amp litude loading , at same stress level a, residual lifetimes

ire the same . The equivalent loading postulate is now stated as follows : Cyclic load-

ings which are equivalent for one stress level are equivalent for all stress levels.

To show uniqueness of damage curves on the basis of this assumption , consider

the damage curve , Fig. 1, as having been obtained by a series of two—stage loadings

in a]. l of which the first stage is n1, g
1

, as previously exp la ined .  In the two

stage program 0
1 

for n
1 

cycles , 0
2 

for an infinitesimal number of cycles the resi-

dual lifetime is n
2
r
. In the loading program 0

2 
fo r N

2 
— ~~ r 

cycles ’the residual

lifetime is evidently also n
2
r
. Therefore these two loadings are equivalent. It

rollows by the equivalent loading postulate that if after completion of these two

loading programs the specimens are cycled to failure at some other stress level , c~,

the residual lifetime will be the same n
r 

, Fig. 1. Therefore the loadings

Icr n
1 

cycles , g for infinitesimal number of cycles ; for N
2 

— ~
2
r 

cy c les , -c for

icitinites imal number of cycles have the same residual lifetime n
r 

for subsequent

i nstant 
~ 

cycling to tailure. This proves uniqueness 01 the damage curve.

i~ damage curve as defined describes the results of a l a rg e  number of fatigue

r ,ii lure experiments In two level loadings. It is desirable th at a maximum number

mt t parameters which intluence fatigue failure be kept c o n s t a n t  in thi s series of

experimen ts. The parameters to be considered are : frequency of loading, mean

n s a  — the average of maximum and minimum amp litudes in a cycle and R —

tr~ r.mti on between minimum and maximum amplitudes in a cycle. It may be assumed

ttt - tt the  t r equency  Is c o n s t a n t  in a l l  c y c l i c  loadings and t h a t  e i t h e r  a or R is

- -

~

- - - ‘- -‘---

~

-- -  -‘ .~~~~~~~~ -~~~~~~--~~~~~~~~ ‘- - -~~~~~ . - -  .-- . -~~~~-
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,·pns tan t. ln tlw HJlPCilll CIIHC of a • o, 
rn n • -1 both o and 

m 
R can be kept 

l'i 11lslnnt. lt is in genernl to be expected that a change in any of these parameters 

~111 chunge the dnmage curves. 

Recnuse of the inherent scatter of fatigue testing, all damage curves must 

be interpreted iro some best fit sense, as is the case for S-N curves. 

The equations of the damage curves are ~-itten in the general form 

o = o(n,y) 0 f(n,y) 
8 

(2 .1) 

~here y is a pnrnmeter, a is the static failure stress or some other con­
s 

venient stress parameter and f is a non-dimensional function. We now proceed 

·- 'l discuss some general properties of the damage curves. 

Evidently, since static failure occurs at one quarter cycle which is consid~red 

,.,, n"O, it follows from (2.1) that 

t(O,y) 1 

Powever, curve fitting difficulties may require use of a 

~~unl to the static test result. 

(b) _Dnmnge curves do not intersect. 

0 
s 

(2.2) 

value which is not 

To prove this assertion we consider the cnse of two low-high load cycling pro-

) rnmc, \vi th equ::Jl amplitude pairs 

in the· first progrnm nnd n ' > l 

The number of cycleR at o
1 

is 

in the second program. Obviously the remainin~ 

Ill u !tnt' N
2 

- n
2 

nt a
2

, ln the flrRt progrnm must be lnrger than the retr.,linin~ 

1 : f ,. t i.me N - n ' 2 2 in the second program, Consequently, 
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-, 0
2 

( 2 . 3 )

l’~ g 2a shows a hypothetical intersection between two damage curves. A ,A 2 
and

N . B represent the two loading programs described above. It is seen t h a t  ( 2 . 3 )
i 2

‘cj o 1, it ~ d.  T h e r e f o r e , i n t e r sec t i o n  is not possible and ne ighbor ing  damage c u rv o s

t o  as in F ig .  2b .

,~~) Damage curves  do not i n t e r sec t  the n or c~ axis (except at a = a ) .

Suppose t h a t  a damage curve i n t e r s e c t s  the  n axis .  This won imply t h a t

ii a two—stage loading program wi th  ampli tudes  O ,a the l i f e t i m e  is sma l l e r  than

L). But the lifetime must be N(a) since the loading is teally one s ta ge .

T h e r e f o r e  the  damage cu rve  mus t  pass through the point O ,a which is not possib~

v i e w of (a) .

Suppose  that a damage curve passing through ni1, 01 
intersects the a axis

i t  
~2 

This would imp ly tha t  if the specimen is exposed to 01 cycles at

:me t 1 - - c a i n i n g  l i f e t i m e  f o r  cyc l ing  at 0
2 

is N 2 ,  which can only be correct if

0. Therefore , no damage curve intersects the C axis below C .

In view of the properties (a) — (c) of the damage curves , it is st-en th at th ’v

i m  a f a m i l y  of n o n — i n t e r s e c t i n g  curves w i th in  the region of  the s—n

h i . h is hounded by the n ,0 axes and by the S—N curve . The d mn. i c u- t - ,l r’,’,o-

.c- -~-, t h r o u g h  the p o i n t  O;a and approach the n ,c axes cmsvmptot i m !  i v .  I h e  :r _ N

e r i e  is the limiting damage curve . It corresponds to a two stage leading in w im i ‘ii

‘~ i l o r e  occurs  fo r  the  f i r s t  s t ress  a
~ 

and res idual  l i f e t i m e  fo r  j S  ? I

the s i m p l e s t  p r o c e d u r e  t assess the form of the damage curves  is t o  , u s s t m m e

- Lot t Im e t r m at h ’ ’ i n i i t  i t  a l  d e s c r i p t i o n  is s i m ila r  t o  t h a t  of t h e  S—N c u r v e .  l e t

- m e  eq un t ion if t h e  S— N cu r v e  t,c r ep  ct ’t ;e n t  ed in the  f o r m
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= a f ( N , F) ( 2 . 4 )

I-mere N denotes value of n for a point on the S—N curve . Then the equati ’n

ot the damage curves is assumed to be given by the similar form

0 = o t ( n , ’y) ( 2 . 5 )

ln~- par ameter y for a damage curve passing through the point n
1
;0
1 

is determin u d

by i n s e r t i n g  those values in to  (2.5) and solving for y.

The twu most common analytical representations of S—N curves are :

a is a linear func t ion  of log
10N .  This will  be called the semi—log f o r m .

(,c ) iog 10O is a linear function of log10N.  This will  be called the log —J ~~~

f o r m . Thus

I
0 = a ( 1  + F log N) ( 2 . 6 )

0 0 N  

.

~~~

In h’ th ‘f these representation s N=l is considered physically equivalent to

N - O

It follows t ha t  the  cor respond ing  forms of damage curves  pass ing  t h rou g h  a

I t l e~1 pa tn t  n 1 0~ a re :

a = ‘c ( 1  -t log n) ( a )
S

( 2 . 8 )

01 /0 —1
= ( h )

l o g  n
1

A
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a = o n ”
~
’ 

; log(a/o ) = ‘y log n (a)

( 2 . 9 )
log(0

1
/ct)

(b)log n
1

The form (2.8) is generally more suitable for fiber composites while the form

( 2 . 9 )  is more su i t ab le  for  meta l s .
N

The , m n :m ~ vt i ca l  expressions ( 2 . 6 — 2 . 9 )  are merely convenient  approx imat ions  and

should n ot be taken too literally. It is seen tha t  all curves in tersect  the N

ax is contrary to theorem (c). The conclusion is that for very low stress ampli-

tudes the analytical expressions are not good approximations .

Other fitting difficulties may occur at small number of cycles. It fre—

q u o n t ] v  happens  that the determined from S—N curve fitting is not the

o found by static testing. In that case the former should be chosen and be

regarded as a curve fitting parameter.

It is permissible to fit a convenient portion of the S—N curve , for the

r , m n c e -~~ D 0~~, say, by the analytical expressions. In tha t case , the val id—

liv of the damage curve expressions is limited to that loading range and C is

a t i t t i n g  p a r a m e t e r .

The S—N c u r v e  may be represented by more than one f u n c t i o n . For examp le:

b r o k e n  s t r a i g h t t i n t ’  in log—log  p r e s e n t a t i o n .  In tha t  case the  damage curves

~j , ei d he s i m i l a r l y  r ep resen ted .

if t i me ,m n , ’ly ti c a l forms do not  prove accura te  enough i t  is n e c e s s a ry  to deter—

ne ho damage  c u r v e s  by testing. In order to determine a damage c u r v e  w h i c h  ~~~~~~

h r ou g h  the  p a i n t  n a g r o u p  of spec imens  are  subjected t o  n 1 c v i  it’s at

and ar e  t h e n  v ’ ,’e l  ~‘d to f cm j l u re  at d i f f e r e n t  s t r e s s  l eve l s  
~2 ’ 03~ 

ich  ot

t i i t ’  1 t t t  i t iies ~I t  0~ ~03~ 
. . . d e t e r m i n e  a p o i n t  on the  damage c u r v e .

~

- -- -‘ - . -~~~‘~~~~ - -- -— ‘-~~~~~~~~~ ~~~~~ - -~~~~~~~~~-. -~~~~~~ ‘-. ~~~~~~~~~~~~~~~~~~~~~~~~
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ihe d a m -m g i ’  c urves iOn be separatel y defined for two stage loadings whi h

i t  nbc - l ow—hi gh t y p e  or  of the high—low type. There then arises the q t a ’ c t  i -  UI

i f  b i b  ‘-c,’t s of curves are identical. Consider for this purpose a loadinc pro—

c r a m  ~n whi  ii n
1 

c y c l e s  t a k e  p l a c e  at  o ,~
. Then the amplitude is ra~ sc’ 1

t or t h e  dur .mt i n  of  a very small number of cycles. After that , the amp litud u

i~~ . r~~~. i i i  t-d t o - m m  to C 1, and cycling is continued until failure. A diagram i f

- i  i i  . I ’um d i n e p r - g r i m  iii the s—n plane is shown in  F i g .  3. I i  t i i t ’  numbe r at

iv ~~1t’~ t o  f a i l u r e  i s  i n s i c i m i f i c , m n t l ’ . a f f e c t e d  by the rise t i  O~~ , and is t h u s

u~l m i ~1l  t o  N
1 
. the lit e t  m c -  at  t h e n  t h c -  segment  A

1
A~ is insigni ficant and

II ~m p w m r d  d .im.m ge cnn-c 
~~ 

B~ coincid es with the downward 1 . m m a g e  A ,1 B
1 
. I f ,

st c , this I s  n t  the e , t h e  upward ari d downward damage curves are dii t c r t’ rt

, ‘ad t he P mc - 0 ’ r ’  cu r - c -  ~xhihit a h y s t e r e s i s  phenomenon . On the basis ci  e x p e r i c n’~ --

in t .t i gu e te st ici ’ i t  is  r e a s o n a ble  to assume ti -mat  such an e f f e c t  w i l l  no t  hi ’

-~ i g r i i t l c ’ c c i i t  c it low t o moderate stress rises but may be significant at high

s i f t - -, .-, I ises with consequent conclusions for the identity of upward and d o w n s ’ m r l

(i i”. Y e  or ’-. L ’S .

I i  i s  to  be emphasized t ha t  it  does not  seem p o s s i b l e  to  include so ii

h’.steresjs clii, t s In the simple ana l y t i c  r e p r e s e n t a t i o n s  ( 2 . 8  — 2.9) sin , 1’ t lme\

r e  h , , sed  on the f o r m  of the  S—N curve where  h y s t e r e s i s  canno t  e n t e r .  f l i e r u —

t . , t 0 , su~ h e t t t e - t s  mus t  be uncovered  b y e x p e r i m e n t s .  This a p p e a l s  t o  he ~

i o u  i t ’ t , m s k  h t ~ c u m i s e  of the  c o n s i d e ra b l e  s c a t t e r  of f a t i g u e  I a l l u r e  r e s u l t s
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3. A n a l y s i s  of Loading Programs

The simplest loading program is two—stage cyclic loading . Its analysis

in terms of the damage curves is trivial since the damage curves have been

d e f i n e d  in terms of residual  l i f e t i m e  under such loadings. Let 
~l 

be applied

r r  n
1 

cycles. Then the stress amplitude is changed to 0
2 

and c y c l i n g  Is

continued until failure occurs after n
2 

cycles . It is required to compute n
2
.

Let it be assumed that the S—N curve is of form (2.6) and ti-mat the damage

curves are of semi—log form (2.8a). Applica tion of n
1 

cycles at °l 
defines a

damage point , Fig. 1. The damage curve passing through this point is given by

( 2 . 8 ) .  It follows that

log ( N
2
—n

2) ~la = a [1 + ( — 1)]  (3 .1)2 s log n 1 a

Sa l v i n g  t or n
2 

we have

1—s -n 2 
= N

2 
— n

1 
1 (3 . 2 )

where

i i 0~)

~ 1 it ~2 
= 

0 
(3.3)

rhe quantit ’.-

= _~j_ + ( i .~~)
N

1 
N

2

is d o t  inc -P  m s M i n e r ’ s c o e f f i c i e n t ( fo r  two s tage  l o a d i n g ) .  I t  f o l l o w s  e a s i l y

rum (2 .6a)  and ( 2 , , 8 a )  t h a t  ( 3 . 2 )  can he w r i t t e n  as
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1—sn 2 n
( i— )l—sl + — — 1 (3.5)

1 2

w h i c h  replaces  Miner ’s ru le  fo r  the present  case. It fol lows from (3 .4  — 5) that

1~ S2
M = l +~~L — (~~ .~. ) l 5 -1- 

‘ 

(3.6)

i t  is eas i ly  shown t ha t

M~~~~l s
1

� s
2

when (3.7)

M~~~~l s
1

�s
2

A s im i l a r  analysis for damage curves of log—log type , (2.9),yields the

r e s u l ts

log s
2 / log  s

(~~~~) = 1
1 N2

( 3 . 8 I

n
1 

n 
log s

2
/ lo g s

~
M = 1 + — — ( —i- )

N
1 

N
1

l\ g c r m n , i t  is e a s i l y  shown t h a t  (3.8) complies with (3.7).

N o n ’  that (3.5) and ( 3 . 8 )  a re  of  the form (1.4) which is based on an expon—

“ mi t r a l  damage rule postulated by Marco and Starkey [7).

P l o t s  of M i n er ’ s c o e f f i c i e n t  for  t w o — s t a g e  load ing  as g i v en  by ( 3 . 6 )  and

(3.8) a r m ’  shown in F i g .  4 .  It  is seen t h a t  t h e r e  is  c o n s i d e r a b l e  d i f f e r e n c e

UIi t s - r i  t- he present pre dict Ion and Miner ’s rule.
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We now proceed to the case of multi—stage loadings. The approach will be

illustrated by treatment of a three—stage loading. A specimen is subjected to n
1

cyc les  at a m p l i t u d e  01, then to n 2 cycles at ampl i tude  0
2• Then the str c-ss

level is changed to 0
3 

and it is required to determine the remaining lifetime

n
3
. Consider the two s tage  loading 01, C

2~ 
Once the stress level is changed to

we proceed on the damage curve pass ing through point n
1; ~l

’ Fig. 5, until the

level 0
2~ 

At this stage the remaining lifetime is N
2 

— n 12 . A f t e r  n
2 

c y c l e s

are app lied at this s t ress  level the remaining lifetime is N
2 

— n 12 
— n

2
. I t

fo l lows tha t  if the  specimen is s u b j e c t e d  to n 12 + n
2 

cycles at 0
2 

the remain-

ing l i f e t i m e  is time same as t h a t  of a specimen s u b j e c t e d  to the  two s tage  load ing

under consideration . (In much v , l g I l er  language we would say that the two loadings

resu l t  in the  same d a m a g e ) .  C o n s e q u e n t ly , the  t h r e e  s t age  l o a d i n g  is e q u i v a l e n t

to the two s tage  load ing  ~~ n
1~ + n

2 
c y c l e s , 0

3 
fl

3 
i -y c l e s .  On the  b a s i s  ‘f

the  equ iva l en t  loading p o s t u l a t e  we can use the  two s t a g e  loading p r o c e d u r e  w h i t  h

impl ies  tha t  after n 2 cycles  at 0~ we proceed ti: level 03 on the  dam c .ge cml r , i

w h i c h  passes th rough  the po in t  n 12 + t i
2

017. This i l c L ’r m i n e s  t h c -  r e l , , t i n i  ng I i —

time n
3
.

E v i d e n t l y  t h i s  p r o c e d u r e  can be g e n e r a l i z e d  to  m o l t  i — s t a c ’ € -  l i d  l o g s  s ’ i ’ h  , , t m ’

n u m b e r  of s t a ge s .  I t  f o l l o w s  t h a t :  the  damage curves, d e f i n e d  t , r  t w ~~~- c t m:

l o a d i n g s ,  a r e  s u f f i c i e n t  i n f o r m a t i o n  to  d e t e r m i n e  l i f e t i m e  f o r  ~~~~ m u l t  i~~~ t - m ~~

l o a d i n g .

For a n a ly t i c a l  pu rposes  i t  is conven ien t  t o  adopt  ti - me f o l l o w i n g  n i t  ‘ i t  i on : c

damage c u r v e s  w h i c h  are  nee d ed f o r  t r an s  i t  Ion f r o m  one l o a d i n g  i t ’vc -  .1 t o  .mn , it li t’ r i t

h ’n t i - d  F) 1,  Ti~~, . . . , t i m ’ last one be i ng t~m m’ ~—N c u r v e .  T i m i -  , m h s ,  i s s , m  ‘i a g i ’ : r m t  -

on dama ge curve i t  s t re s s  l e ve l  a , i’~ d m ’ i i ’ t e i l  . 1.1 t e l  I i i i  m t

ahsc ~~S5. l5 ot  points on t h e  S — N  i ’ u u r v l ’  i s  d e n o te d  ~
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Cons ide r  ci t h r e ~’— st c i g e  l o a d i n g ,  F ig .  5 , w i t h  damage cu rves  of semi—l a g

ty pe.  l~’i t h t i l t ’  n u t - m t  i on  a d o p t e d

n 11

= 11
12 

— n 1, ( 3 . 9 )

0
3 

— fl~~~~~

Since the damage curves l ove , by hypothesis , the same functional form as the

S — N  t u r v e , i t  f o l l o w s  at  n ice t h a t  ( 3 . 5 )  can be in te rp re ted  as a r e l a t i on

between n
1
, n

2 
where the damage curve 2 now replaces the S—N curve  of the

p r ~~v i o u s 1 v  ansidered two level loadings . Therefore

n 1—s 2 
~( _‘i ) i .— s i  + —  = 1  ( 3 . 1 0 )
027

S i m t i ar l ~- , i~~~’ i n t e r p r e t  t h e  p o in t s  n 22 ;0 2 and n 23 :a 3 as a twim l e v e l

- ‘u d  I nm. - Th e r~ t o r c -  , i i  cm (3.5)

1 53

( - -

~~
-
~~

- ) ~~
‘
~‘2 + ‘~ -c~’ 1 (3 .  1 1 I

‘ 2 3

U- - - t r i g t h e  I i l l  t i on a l  f o r m  of t h e  S—N and damage m i r v e s  ( 2 . 6 )  and  ( 2 .  B a ) ,  i t

f m r l lows I r a m  ( 3 . 10  — 11) t h a t

1 5 2 
1-s 3

. ) 1 5 ~ ~ ~~ ]~~~~2 4 = 1 s . = ( 1 . 1 2 )

i h r - ’ t  ‘ r i -  t h e  Min er ’s i - u t  I i c - t e n t  ‘c g i v en  b~’

~ 

‘ . - -
~~~
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1—s1—s 3
n n n 2 n

M = i + + -2 _ 
~ ~~~~~~ ) l -s~ + ‘~~~2 ( 3 . 13 )

1 2 1 2

S i m i l a r  a n a l y s i s  fo r  the log—log forms  gives the  r e s u l t s

log s / log  slog s / log  s 3 2n 2 1 n n
+

~~~~~
— ]  +~~ — = 1

‘ 1 2 3
( 3 . 1 4 )

n n~ n 1 log s2 / l o g  s1 n log s3/ log s2
N

1 
N

2 
N

1 
N

2

As a final example for multi—s tage loadings , we consider the case of

periodic two s tage  load ing  where the  per iod  (cal led block in f a t i g u e  j a r g o n )

is composed of f o r  n
~ 

cod es fo l lowed  by 02 f o r  n
2 cycles .  A rel~-

r e s e n t , m t  ion of t h i s  load ing  fo r  nondimensional  s t resses  is shown in Fig. 6a.

The loading path in the  s—n plane is shown in Fig. 6b.

Let  t h e  i nve r se  of a damage curve function s = t (’y , n)  he w r i t t e n

n = g ( y , s)  s = 0/0 (3.15)

An a l te r n a t i v e  f o r m  i s

= (s , n )  ( 3 . l b u

W i t h  t h e  l i t  i i  ion  adopted above , we p r oceed i n t h e I~~] lowing m a i m n u

l ong the 1 ‘ m d  i o u ’  p a t  Im shown in  Fl p .  6a .
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n
_Il 

= n
l

= g ( r ~~ , s~~) =

n 2 7  
= 
°12 

+ n
2 ( 3 . 1 7 )

0
21 

= g ( y 2 , s
1

) ‘
~
‘2 -( (n

22 , s
2

)

fl31 
= fi~~~ + n ,

Il-~~s step—ho-- step procedure is continued until the S—N curve is reached , th us

aete :rnining t O e  liti t ime for the loading.

lhe functions p and for the two types of damage curves considered are

s—I

g( s ,~~) = 10

semi—log  (3.  18) -

s— I
f ( S ,n )  = -iog n

i / I
=

log—log  ( 3 . 1 9 )
m ’ t  5

(s , n)  = - -
~~

---

~
-——

log n

he pr i -  ‘ d o n ’  is  c r c  ~-onver1 l i ’ r i t  f o r  numer i ca l  c o m p u t a t  i on .  I t  i s  a l s o

e,~-, 1 , re’a i ~ed t h a t  i~ an be used t m ana l  ~ ze any mul  i — s t  ripe’ load i n g .

k~- now ( , , t i ’ ~ ider the ca se ’ when t he loading amp Ii tude ~- a r  i i ’s i n  ar b  I t  a rv

i t  l I l a , - . t ,ts lii ‘ i n  with ti m e  nttm tm b e r of cy cle s , w h i c h  is  d e n o t e d  n .  lhmis

-j = i t ( f l )  ( 1 . 2 0 )

~

- . -

~

-- -

~

-- - -
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W1. t h i n v m ’ r - , e

= i -i ( - : )  (3.21)

The l o a d i n g  ( 3 . 2 0 )  may be rega rd ed as a multi—stage loading consisting of an

i n f i n i t e  number  of levels with increments dc .  F igu re  7a shows the loading curve

( 3 . 2 0 )  w i t h  i n i t i a l  v a l u e  0 .  The representation of (3.20) in the s—n p lane

is as f o l l o w s :  At 0 p l o t t e d  on t h e  0 axis proceed dn horizontall y to the

r i g h t .  Trace  a damage curve  pass ing  th roug h the po in t  d n ; :  and on it proceed

until :- + d : , where  do is determined by dn arid the s lope of the loading

c u r v e  at 0 . At the poin t  t hus  reached in the  s—n p l ane , proceed ano the r  do

horizontall y and repeat t he  p r e v i o u s  p rocess .  F ig .  7b i l l u s t r a t e s  this process

f o r a ty p ical  p o i n t  on the loading c u r v e  (3 . 2 0 )  and the image of that point in

the s—n p lane . I t  is seen t h a t  by t h i s  p rocedure  the  loading cu rve  C is

mapped into the cu rve C ’ in the s—n plane. Intersection of curve C ’ with

the S—N curve defines fa ilure under the loading program (3.20).

This p r o ce d u re  of -~ ‘n st ru ct i on  of the image C ’ of C w i l l  now be expressed

analytically . Let the  e q u a t i o n  of C ’ be denoted

G(s , n) 0 s = 0/0 1,3.22)

The relation between dii and dn on this curve is illustrated in Fip . 7h.

The d i f f e r e n t i a l  dn is given b y

dn (lO
ll 

4 d~ ( 3 . 2 3 )

w l i m ’ r e  u n 1) is t im e  i ’ont r i b t i t  i on  ‘li i ’ t I n  m o v em e n t  f rom 0 
~~~~ a + d- ’ on t h e  damage  -

i o r ‘‘c w h i c h  t n ; m uiu , e s t imro tigh liii ’ p o i ci t n~~; - . Not e that at this point

-‘— ~~~~~~~~



— 18 —

O f) 
= n ( 3 . 2 4 )

l e t  the d~m mcm g e c u r v e  e c l u a t  ion ( 2 . 5 )  be w r i t t e n  in the form

fl f) g (s , - 1’) ( 3 . 2 5 )

Sinc: e y is constant on this curve i t  fo l lows  tha t

dnD = -
~~‘~~ ds ( 3 . 2 6 )

In v i e w  0, 1 (3.24 — 2 5 ) ,  ~ of the  damage curve passing through the point nf);O

( ‘ in be expressed from (3.20) in the form

= ‘1’(s,n) (3.27)

N ow w r i t e  (3 .21 )  in the form

n = h ( s )  ( 3 . 2 8)

I n t r o d u c i n g  ( 3 . 2 6  — 3 . 2 8 )  i n t o  ( 3 . 2 3 )  we a b t a i n

= + h ’  (s)  ]ds (a)

( 3 . 2 9

( = y ( s , n )  (h)

where  (h )  i s  t o  h i ’ in t r o d u c e d  i n t o  (a )  a f te r  he p a r t  i a l  d i  t~f e r e n t  l a t  ion b u s

h i ’ i ’ i n  p e r t  in rmed

F .q i i .  ( 3 . 2 9 )  i s  ‘ m n & n l  itt - m r , ) r l t i t I  m t v  f i r s t  ni— d ,’r d i  I I & ’ r e n t  i a l  i ’ , j l i , i t  ion at

u i ’  t

.-

~

--

~

- - _ -

~ 

- -~~-- -— - - -  -~~ 
_ 

- -- --~~~
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cln 4~(s,n)ds 

Its integration stnrting out from an initial point 

ol- the l'\trVl' C', (3.22). 

n 'Cf o' o 
gives the equation 

The intersection of (3.22) with the S-N curve defines the stress level 0 u 

at which failure occurs under the loading program (3.20). The cycle ordinate n 

.tn t.hc S-N plane associated with the intersection point does not define the 

lifetime. The lifetime N is defined from (3.20) by (see Fig. 7) 
u 

N 
u 

[;(o ) 
l1 

(3.30) 

This r:tises n problem when there is no one-to-one correspondencP between a and 

n as defined by (3.20), which happens when (3.20) is not a monotonic function. 

ln this event it is necessary to determine during the integration of (3.29) the 

images of the extrema of (3.20) on C'. 

the proper monotonic part of (3.20). 

In this fashion a is then located on 
u 

Ln the important case of load discontinuities in (3.20) it is necessary 

tu Integrate (3.29) until the image of the discontinuity in the s-n plane is 

readlE'd. TlH_ jump in o then proceeds on the damage curve which passes through 

the end point of integration reached, in the s-n plane. Then the integration 

i" c.ontinued untj l t:h.'! next discontinuity, etc. 

The ittnctions g(y,s) and y(s,n) which appear in (3.29) have been given 

for s~mi-Jog and log-log damage curves by (3.18- 19). Therefore, for these 

c:t!,v~;, the clLfferent:Ln1 equntion (3.29) assumes the forms 
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dn ~og n 2n 10 + h'/s)]ds (a) semi-log s - l 
(3.31) 

dn n log~+ 
s log s h' (s)]ds (b) log-log 

A representation of (3.32) in terms of the variables n, n can be obtained 

by writing (3.20) in the form 

s "' H(i;) (3.32) 

and substituting into (3.21). 

It appears that analytical integration of equs. (3.31) is not possible but 

the equations are readily integrated numerically by use of the Runge Kutta method, 

for example. For this purpose it is convenient to introduce the variable 

n log n 

Thon (3.31) assume the forms 

E.TJ. 
ds 

__ _,_n_ + h' (s) 
s log s 

10
n 

(a) 

1 (b) 
£n 10 · 

(3.33) 

(3. 31~) 

As an example we consider the loading program shown in Fig. Ra. The initial 

amplitude is given by s = 0 /0 
0 0 s and then diminishes linearly to a value s

1
• 

Cycling is then continued at constant amplitude until failure. The linear variation 

o ( cycling amplitude is described by 
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(3.35) 

lt follows from the definition (3.28) and from (3.35) that 

h' (s) (3.36) 

With this value of h' (s) Qqus. (3.34) must be integrated starting out at the 

initial point n = 0; s = s 0 . Note that n = 0 corresponds to n = 1, not n = 0. 

This is an insignificant correction which is required because of the log repres-

cnUttion. 

Integration of the differential equations gives the image C' of the loading 

fLmction in s-n plane. This image is shmm in Fig. Bb for the semi-log case, 

equ. (J.34n) when so= 0.7, n = 
0 

10
4

. It is seen that the image C' in the s-n 

plane of the linear loading curve C starts out horizontally and then approaches 

asymptotically a straifht line passing through the point n = o, s = 1.0, i.e., 

a damage curve. This is a general characteristic of solutions of (3.34) since 

for l~rge n the second term on the right sides becomes very small in comparison 

r.o thE: first terms because of lOn in the denominator. If the second term is 

neglected the solution of the differential equations are the damage curves (2.8a), 

(2.9:t) respectively. This is also evident from (3.23) since neglect of the. second 

term c1n the right s~~e of (3.34) is equivalent to neglecting d~ in comparison 

For linenr londing from R0 to the remaining lifetime is given by the 

horJzontal d:Lstnnce between the point on C' where s"'s
1

, and the S-N curve, in 

s,n coordinntcs. Note that the present figure is jn s,log n coordinates. Fig. 8b 

~1hnws rPmnlnlnr, lifetimes for various values of H
1

. 
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In order  to compare the  present  p r e d i c t i o n  to those of Miners ’ ru le  it is

necessary  to wr i t e  Miners ’ rule  fo r  a continuous loading f u n c t i o n .  To do th i s

the  con t inuous  loading ( 3 . 2 0 )  is in te rp re ted  as a mul t i—s tage  loading w i t h  success ive

load increments  do and cycle increments dn. Then (1.3) may be w r i t t e n

0 0

J J • 
d o = l  ( 3 . 3 7 )

00 00

where N( 0 )  is l i f e t i m e  at constant  a as given by the S—N curve . Equ.  (3 .38)

de f ine s  the f a i lu re  stress a .  L i f e t i m e  N is then given by ( 3 . 3 0 ) .

In terms of the nondimensional s t r e s s  s = ~/o (3 .37)  assume s the fo rm
S

ds = 1  ( 3 . 3 8 )

For semi—log and log—log representations (2.6), (2.7) we have respectively

s—i
P

N ( s )  = 10

(3.  39)
1/F

N ( s )  = s

w h i l e  h ’ ( s )  f o r  the  l inear loading is g iven by ( 3 . 3 6 ) .  For the p re sent  l o a d i n g

(3.38 )  assumes the form

~ 1

ds + = 1 (3. -~O l

wh i c h  del  i n e s  t h e  r e s i d u a l  l i f e t i m e  on the  bas i s  of M i n e r ’ s r u l e.

_ _ _  .~~~~~~~~ _ _ _

~~~~

. --

~
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It  fo l lows  f rom ( 3 . 4 0 ) ,  ( 3 .36 )  and (3 .39)  tha t  n
1 

is given by

F 
_____ 

N ( s
0

)
= N ( s 1

) — in 10 S
0~~

5
1 

[1 — 

N ( s
1

) (a )  semi—log

(3 .41)

r n
0 

N ( s )
n
~ 

= N ( s
1

) — {s
0 

—

~

-

~ 

- s
1J (b)  log-log

The n
1 

pred ic ted  by (3 . 4l a)  are also shown in F ig .  8b. i t  is seen t h a t

t h e r e  a r e  s i g n i f i c a n t  d i f f e r e n c e s  between remaining lifetimes as predicted by

Miner ’ s rule  and the present theory.

A n a l y s i s  has also been p e r f o r m e d  f o r  the  case of pure  l inear  v a r i a t i o n  of

cycle amplitude (increasing and decreasing)with number of cycles , until failure .

Resu l t s  obtained fo r  va r ious  such cases showed l i t tl . e  numer ica l  difference between

lifetime predictions by present theory and by Miner ’s rule . It is of great

importance to a r r i v e  at some general conclusions with respect to loading char—

~t . teristics f o r  w h i c -h  M i n e r ’ s r u l e  and t h e  new t h e o r ’~ p r e d i  s i g n i f  i c , i n t  l v

di fferent lifetimes. lt appears that much further analytical work is needed

to o b t a i n  such intormati on .

4. Summary and Conc lusion

A r a t i  00:1 ! p h e n o m e n o l o g i c i t  theory to  compute I a t  igue I i  fet m e  under irbi t r a r v

cyc i ic  l o a d i n g  p r o g r a m s  has been d e v e l o p e d .  The t heo ry  i s  based I n n  t i m , ’ c o n c e p t  (it

damage c u r v e  I c i m i  I l ’s w h i c h  r ep re sen t  a l l  poss ib le  two s t age  m ’v ci  Ic  l oa d i n g s  — I i ’  —

I si lure’ . The d c i n m ; i g e ’  c u r v e s  may he o b t a i n e d  ex p e r i m e n t a  l i v .  In  the  p r t ’s t ’n t  w ork

t h e i r  a n a l v t  i c c i l  t e r m  i s  p o s t u l a t e d  on t h e  b a si s  ol assumed s i m i  l a r i t  v w i t h  N N

cmi rye an ti I y t I cli i r e p  re sent . at ions.

_ _ _ _ _  -
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The theory is based on a basic assumption which has been termed the

equivalent ~~~~ding~~~os u l a t e  which det  ines in macroscop ic  t e rms  specimens which

• have s u f f e r e d  the same damage tinder different loading programs Th~ pos tuiit .n

leads to uniqueness of the damage curves  and underlies methods of lifetime anocvsi~

in terms of the damage c u r v e s .

Procedures  of l i f e t ime  p r e d i c t i o n  have been given for piecewise constant cvcLc-

amplitude variation (multi—stage loading) as well  as for  c o n t i n u o u s  v a r iat i o n  of

cycle amplitude ~-.‘ith number of cycles. In the first case analysis consists of

a simp le step by step procedure in terms of damage curves. In the second ease

solution of i n i t i a l  value problems for first order nonlinear differential equations

is required.

Damage curve f ami l i e s  considered in th is  work  are s t r a i g h t  l ines  in i~~g n ,

or in log n , log a p lanes .

A n a l y t i c a l  r e su l t s  have shown that for multi—stage loading progr:mr:s the

predict i-ans of the pr esent theory a r e  ( ons .Lde r ab lv  d i f f e re n t  t han  t h ’ ~~ h i n t  ii

on ~~~~~~~~ rule. Analy sLs of a few cases of continuous amp ] :tude ~‘c i n  m - m t :o n  pr ’ gn m~

has shown that in c-ertairi cases present p redic tccn s are signific ant )~ d ii fe rci t

tram those based on Miner ’s rule while in others this is oat the c a se .

F u r t h e r  a n a l y t i c a l  work ~s n eeded to  s e a r - h f-o r load! ng ch a r cm i or st i cs ~~ Ii

I: nd t o  Si gnu  ican t d isc  r e p an c i e s  be tween  p redi ,’ti c’n by M i n e r ’ s ru l~’ m i n i  pn ~ ‘ c i t

t h e o r y .  I t  is a l s o  n t  g r eat  i m p o r t u -  e Ic- i , s t m i h l i s h  an a n a l v i  i c - i l  
~~~~~~~ 

o d i u m  t a r

random loadings . i . e .  , w h e r e  the  cy c  I c  ampl .i t t .ide i s  a random v a r i a b l e  n~~t ‘ i n I v

cm t i St k c i i  l o a d i n g  i n  I o rm at  I on i .-, m ’ ., t I abl e . Tb i s 1 s ci di f I icil 1 pi  ‘~~ ‘ it -rn s i n ,

t t  r e q u i r e u  s m n l m i t  i on  of non.I j n i c r  d i i  l e r i n t i - m i  ‘ i 1 t i ’ n t  i on s  w i t h  r : i n d o : t i  1u ~~~ i t .

An e x p e r i m e n t i l  r ig i - i t l i  i s  now i n u i ’ ’ r  w ay  t o  - x , m n h I t l i ’  t h e  v i i  i d i i v  I t i m  t I i ~ I V

Th i s  r o n s i s t s  i i i  t i ~c s t - m c i ’  l i i : t d i n g n — t i n — t  i i  lOu ’ ol gios t iher t- I n l X \ ’  sp i ’ , ’ l ’ l O  1 0 .

_ _- --- - . - -  ~~~~~
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